Extraction-Free 1-Step RT-qPCR Kit

Cat. No.	Product Description	Size
CRTQ01-00	Extraction free 1-Step RT-qPCR Kit	100x 20 μL Reactions
CRTQ01-01	Extraction free 1-Step RT-qPCR Kit	500x 20 μL Reactions
CRTQ01-02	Extraction free 1-Step RT-qPCR Kit	5000x 20 μL Reactions

Intended Use

- The Master Mix is used for real-time qualitative and quantitative RT-PCR amplifications with SYBR Green dye directly from cell lysate. No RNA extraction is needed.
- The RT-qPCR master mix is a premixed, 2x concentrated solution that has all the components except for gene-specific primers and RNA template.

Kit Characterizations

- A unique lysis buffer is used to lyse the cultured cells
- The RT-qPCR master mix is specially formulated to overcome the endogenous PCR inhibition in extraction-free RNA samples.
- For the reverse transcription step, this kit uses a highly efficient Thermophilic Reverse Transcriptase (RTase, US patent pending), which is a thermophilic type A polymerase, with optimal working temperatures of 60-62°C.
- The RTase is easily heat-inactivated at ≥90°C for 1min.
- The RTase efficiently synthesizes a complementary DNA strand on RNA template from a gene-specific primer, ≤1 unit per 20µL of reaction.
- The RTase is capable of reversely transcribing single digit copies of target RNA molecules consistently.
- The kit contains *Taq-Fast* DNA polymerase which extends more than 300 bases with relatively short cycling program. The preferable PCR product size is ≤150bp.
- The concentrations of the primers are variable depending on assay designs and thermocycling protocols (Table 1).

• The kit has three formulations: No ROX, Low ROX or High ROX

Kit Contents

Cat. No.	Lysis Buffer	RT-qPCR Mastermix
CRTQ01-00	10 ml	1 ml
CRTQ01-01	50 ml	5x 1 ml
CRTQ01-02	500 ml	50 ml

Transportation and storage

- The kit can be transported at below 4°C for up to 3 days.
- The kit should be kept stable in the dark at -20°C for ≤24 months with ≤10 times of freeze-thaw cycles. The kit can be stored at 4°C for a week.

Protocol for extraction-free RNA from cultured cells

- 1. Wash 10,000-20,000 adherent cells in a well or suspension cells in a medium with 1X PBS buffer.
- 2. Add 50-100ul Lysis Buffer to the well or to the collected cells, and leave for 5min.
- 3. Break down the cells through either sonicator, or vigorous vortex for 1 min.
- 4. Heat at 95°C for 10min and then cool down to 4°C.
- 5. Up to 4µl of lysed RNA sample can be added to a 20ul final RT-PCR volume.

Note: the recovery rate of the extraction-free RNA is heavily affected by how completely the cells are broken down.

Setup Reaction and Thermocycling

- 1. Thaw 1-Step 2X RT-PCR Mastermix and other reaction components at room temperature, mix each component, centrifuge and then place on ice.
- 2. Set up reactions (Table 1).
- 3. Seal tubes with flat, optically transparent caps or seal plate with optically transparent film.
- 4. Mix and then briefly centrifuge the tubes or plate.
- 5. Program PCR instrument with indicated thermo-cycling protocol.

Extraction-Free 1-Step RT-qPCR Kit

- 6. Load PCR tubes or plate and start to run.
- 7. Perform data analysis according to the PCR instrument instructions.

Table 1. Setting up a 20µL or 10µL reaction

Component	Volume per 20µL	Volume per 10µL	Final concentration
2x Mastermix	10μL	5µL	1X
Primers ^a	Variable	Variable	Each 150-900nM depending on primer design and thermocycling
RNA templates°	Variable	Variable	As low as single digit copies of target RNA to ≤1µg total RNA
H ₂ O	To 20µL	To 10µL	

Note: Each primer's T_m should be designed ≥60°C, preferably between 62°C to 65°C, using primer3 software for high efficiency and specificity.

Table 2. Compatible instruments

qPCR Instrument	ROX required by instrument	Passive dye setup
Bio-Rad [®] iQ [™] 5, CFX96, CFX384, Opticon Roche Lightcycler [®] Qiagen Rotor-Gene [™] Eppendorf Mastercycler [®] Cepheid [®] SmartCycler [®]	Not recommended	Not necessary
Applied Biosystems® 7500, 7500 Fast, QuantStudio™, ViiA7™, Agilent Mx™	Low ROX (50nM final concentration)	Turn on ROX passive reference dye
Applied Biosystems [®] 5700, 7000, 7300, 7700, 7900, 7900HT, 7900HT Fast, StepOne™, StepOnePlus™	High ROX (500nM final concentration)	Turn on ROX passive reference dye

Table 3. Standard Thermocycling Protocol

Stage	Temperature	Period	Number of cycles	
I	60°C	10min	1	
II	95°C	1min	1	
III	95°C	10sec	05.40	
	60°C, signal acquisition	60sec	35-40	
IV	60°C to 95°C	Various	1	

Table 4. Fast Thermocycling Protocol

Stage	Temperature	Period	Number of cycles
I	60°C	10min	1
II	95°C	1min	1
III	95°C	10sec	
	60°C	30sec	35-40
	68-72°C, signal acquisition	30sec	
IV	68°C to 95°C	Various	1

Footnotes of Tables 3 and 4

- The primer concentration used in Tables 3 and 4 is typically 0.15-0.2uM
- The Fast thermocycling protocol in Table 4 increases overall DNA polymerase activity by 50%, a more effective protocol than Table 3.

Precautions

If you order a "No ROX" Mastermix but you have an Applied Biosystems or Thermo Fisher instrument, please turn off ROX passive reference dye button when setup assays.